
The new Java 1.5

● murphee (Werner Schuster)

● http://jroller.com/page/murphee

Overview
● Language features in 1.5

– Short introduction
– Use/Don't use?

● Standard API changes
– Monitoring and Management
– Concurrent Utils
– Swing and AWT updates
– Changes for Unicode 4.0
– Instrumentation
– ...

● Sun JVM Changes
– Class Data Sharing
– ...

New Language features

● Metadata (JSR 175)
● Generics (JSR 14)
● Autoboxing/Unboxing (JSR 201)
● Enhanced for Loop (JSR 201)
● Typesafe Enums (JSR 201)
● Static Import (JSR 201)
● Varargs (JSR 201)

Language features – General

● First languages changes since 1.1 (except for
assert)

● Only compatible with JVMs >= 1.5
– Reason: they use 1.5 standard lib methods
– Always make sure to use the “-source” args
– “-source 1.4” if you don't use new features
– Retroweaver http://retroweaver.sourceforge.net/

Metadata - Intro

● Probably most important new feature
(Sorry Generics... but it's true)

● Started out with Javadoc @param,...
● .NET/C# extended it
● XDoclet introduced Metadata as well
● Better solution than “Marker Interfaces”

Metadata – Syntax

● Annotations (java.lang.annotation)

Sample:
// Annotation
@Retention(SOURCE) @Target(METHOD)
public @interface Overrides { }

// Usage
@Overrides
public boolean equals(Foo that) { ... }

Metadata - Syntax

● Retention
– SOURCE
– CLASS
– RUNTIME

● Target
● Member types

– Primitives
– String
– Enum
– Annotation types
– Arrays of all the preceding types

Metadata – another Sample
// Declaration
public @interface RequestForEnhancement {
 int id();
 String synopsis();
 String engineer() default "[unassigned]";
}

// Sample usage
@RequestForEnhancement(
 id = 2868724,
 synopsis = "Provide time-travel functionality",
 engineer = "Mr. Peabody"
)

Metadata – Use/Don't use?

● Tools Tools Tools – are necessary to add
value

● Possible use in Aspect Oriented Programming
(explicit markup for pointcuts?)

● Problems
– Missing mindset in developers
– No samples for good usage
– Tools Tools Tools

Definitely: Use!

Generics

● Java Generics != C++ Templates

● Ancestor: GJ

● Reason
– Better documentation
– Increase type safety
– Less typing (no explicit casting)

Generics - syntax

Simple Example:

class FooMap<K,V>{
 public void put(K key, V value){...}
 //... other stuff
}

// usage
Map<String, Date> mapper = new FooMap<String, Date>();
mapper.put(“foo”, new Date());
Date x = mapper.get(“foo”);

Generics - Advanced

● Constraints
– Not explicitely available in C++
– Wildcards
– Necessary because of strict typing

● Problems
– No: T[] x = new T[10];
– Basically just removes need for explicit casting

● http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

Generics – Use/Don't use?

● Enhances documentation if used
– public Map<String, Date> getDates()

better than
public Map getDates()

● Sun made sure it integrates with legacy software

Definitely: Use

Autoboxing/-Unboxing

● Java has
– Primitives
– Reference types (classes)

● Non-unified type model
– Reason: speed tradeoff

● Problem: use of primitives in Collection classes

● Current solution: explicitely wrapping primitives

Autoboxing – Explicit Wrapping
List intList = new ArrayList();
for(int i=0; i<someListLength; i++){

// Wrapping
 intList.add(new Integer(i));
}

// Un-Wrapping - yikes!
int foo = ((Integer)intList.get(0)).intValue();

// Disclaimer: this is just supposed to show wrapping,
// normally code like that should not use a
// Collection, but an array!

Autoboxing/AutoUnBoxing
List<Integer> intList = new ArrayList<Integer>();
for(int i=0; i<someListLength; i++){

// AutoBoxing
 intList.add(i);
}

// AutoUnBoxing and Generics at work...
int foo = intList.get(0);

// Disclaimer: this is just supposed to show wrapping,
// normally code like that should not use a
// Collection, but an array!

AutoBoxing - Performance?

● AutoBoxing make Java easier to use
● Problem

– It “hides” object creation from the developers mind
● Actually, AutoBoxing is not that bad

– Values from -127 to 128 (byte, short, int)
are cached

– Running this code only results in object creation the
first time it's run:
for(int i=0; i<20;i++){
 list.add(i);
}

– Autoboxing does not call new for, but valueOf()
of Wrapper classes

Auto(Un)Boxing – Use/Don't Use?

● Caching makes it less memory intensive
● Makes code clearer
● Future versions may be even more efficient

(better than explicitely calling new)

Use (but with caution)

Enums

● Long awaited feature
● Improve type safety

– No more integer constants as enumeration
replacement

● Real classes
● Support to be used in switch
● Runtime output of enum name with toString

Enum - Sample

Simple:
public enum Season { WINTER, SPRING, SUMMER, FALL }

Season mySeason = WINTER;

public static void main(String[] args) {
 for (Season s : Season.values())
 System.out.println(s);
}
Prints:
WINTER
SPRING
SUMMER
FALL

Enum – Another Sample

More elaborate sample (from JSR-201 text):

public enum Coin {
 PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

 Coin(int value) { this.value = value; }

 private final int value;

 public int value() { return value; }
}

Enum – Use/Don't Use?

Definitely: Use!

New for loop
● Makes code more readable
● Uses java.lang.Iterable
● Works on arrays as well

List<String> myList = foo.getList();
for(String currElement : myList){
 // do something with currElement
}

Definitely: Use!

Varargs - Overview

● Syntax sugar for new[]{a,b,c}
● No overhead
● Implemented for printf()?
● Other classes/methods use it too
● public void foo(Object...)

Definitely: Use!

Static Imports

● Some developers don't like typing

import static java.lang.System.*;
 ...
public static void main(String args){
 out.printf(“My foo is no %s”, “bar”);
}

Static Imports

EEEEEEEEK!

Static Imports – Don't Use

● Throw out DOS Edit and edlin and use a more
modern way to write code

● Tip: add the following to your Coding standard:

“Using static imports will be
punished with 25 whip lashes!”

Do not use static imports!

Monitoring/Management

● JMX (Java Management Extension)
– Useful for representing settings at runtime
– Various consoles available
– Export *Mbeans from VM using RMI

● JVM monitoring using JMX
– java.lang.management holds Mbeans with JVM

information (Memory, Classloading, GC,...)
● ManagementBeans:

– Easy to use
– Can be made as flexible as possible
– http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/JMXoverviewTOC.html

Concurrency Utils
● Synchronize and wait/notify are not enough
● Written by Doug Lea
● java.util.concurrent

– Executors (configurable Threadpools)
– Queues
– Synchronizers (Semaphores,...)
– Concurrent Collections (not governed by a single lock

like Hashtable, Vector,...)
● java.util.concurrent.locks

– Locks
– Condition Variables

● java.util.concurrent.atomic
– Threadsafe, lockfree access to single vars

Bytecode Instrumentation

● java.lang.instrument
● Modifying a class file

– When the class is loaded
– While the class is being used

● Sun Research: JFluid VM
● Possible before 1.5, but no Java API available
● Part of JVM Tools Interface

– Replacement of JVMDI and JVMPI)
● What is it for:

– Debugging (change code)
– Profiling (add and profiling code from classes)

AWT - Changes

● AWT on X now implemented using Xlib (not
Motif)

● Java2D can now use OpenGL to improve render
speed
– On Windows this has been done since 1.4.x using

DirectX

● http://java.sun.com/j2se/1.5.0/docs/guide/2d/new_features.html

Swing - Look&Feel changes

● Windows XP
● GTK
● New default theme for Metal (“Ocean”)

...now with more Gradients
● Synth – new skinning L&F

 declaration with XML files
 extensible with Java code as well
 Problem: little documentation available - yet

Unicode 4.0

● 2^16 are not characters not enough
● Supplementary characters
● “Old” 65536 characters are now “BMP”

– Basic Multilingual Plane
● What has to change?

– Nothing - if you use high level classes (String,
CharSequence,...)

– The length of a char[] != number of characters
– Low Level APIs now use ints to represent

characters (2 surrogate chars = one int)
● http://java.sun.com/developer/technicalArticles/Intl/Supplementary/

Various Stuff...

● Arbitrary Precision Math
– In BigDecimal

● Pack200 Jar Compression
– Exploits characteristics of Jar files
– Much better compression

● printf()
– In java.io.PrintStream
– Convenience method for Formatter

Sun JVM – Class Data Sharing

● Long requested feature
– Problem: same classes loaded for each JVM instance

● When the first JVM is launched, it
– Loads the rt.jar classes
– Creates a file containing the loaded classes

● Any new JVM simply maps this file into
memory
– Reduced startup time

● Only system classes – application classes sharing
in some future release

Garbage Collector

● Lots of GC algorithms and combinations
available

● Optimization through twiddling with parameters
● GC can now consider these goals

– A desired maximum GC pause
– A desired application throughput goal
– Minimum throughput

● http://java.sun.com/j2se/1.5.0/docs/guide/vm/gc-ergonomics.html

JVM - Misc

● AMD64 support

● Java Memory Model fixed (JSR-133)
– Arcane stuff... read the article
– http://www-106.ibm.com/developerworks/library/j-jtp02244.html

Future of the Java platform

Put the Standard library under some
open license?
Murphee's opinion:

● http://jroller.com/page/murphee/20040225

● http://jroller.com/page/murphee/20040305

● http://jroller.com/page/murphee/20040426

